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Abstract. Statistical properties of RNA folding land- 
scapes obtained by the partition function algorithm (Mc- 
Caskill 1990) are investigated in detail. The pair correla- 
tion of free energies as a function of the Hamming 
distance is used as a measure for the ruggedness of the 
landscape. The calculation of the partition function con- 
tains information about the entire ensemble of secondary 
structures as a function of temperature and opens the 
door to all quantities of thermodynamic interest, in con- 
trast with the conventional minimal free energy ap- 
proach. A metric distance of structure ensembles is intro- 
duced and pair correlations at the level of the structures 
themselves are computed. Just as with landscapes based 
on most stable secondary structure prediction, the land- 
scapes defined on the full biophysical GCAU alphabet 
are much smoother than the landscapes restricted to pure 
GC sequences and the correlation lengths are almost con- 
stant fractions of the chain lengths. Correlation functions 
for multi-structure landscapes exhibit an increased corre- 
lation length, especially near the melting temperature. 
However, the main effect on evolution is rather an effec- 
tive increase in sampling for finite populations where 
each sequence explores multiple structures. 
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1 Introduction 

In Sewall Wright's model (Wright 1932) biological evolu- 
tion is understood as a fitness optimizing process on a 
very complex abstract landscape. Manfred Eigen (1971) 
made an attempt to model the origin of biological infor- 
mation by placing Darwin's principle onto a physical 
basis. Reaction kinetics of erroneously replicating bio- 
polymers was applied to study evolution on the molecu- 
lar level and led to the concept of the (molecular) quasi- 
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species (Eigen and Schuster 1977; Eigen et al. 1988, 1989) 
which may be considered as the genetic reservoir of an 
asexually replicating ensemble. The molecular concept 
enables a more complete description of the evolutionary 
optimization process, since it includes the relationships 
between sequence, structure, and function of biopolymers 
as the ultimate source of the reaction rate constants of the 
kinetic ansatz. Indeed, the fitness values are obtained as 
(mostly linear) combinations of these rate constants. 
Specific models of fitness landscapes were investigated by 
analytical and numerical tools (Swetina and Schuster 
1982; Schuster and Swetina 1988; Nowak and Schuster 
1989). Replication with decreasing replication accuracy 
shows an error threshold which sharpens with increasing 
chain lengths, thereby closely resembling cooperative 
transitions in biopolymers. No (finite) population can 
be stationary at error rates exceeding the value of the 
threshold which implies complete loss of genetic informa- 
tion. This approach was complemented by a study of 
the generic behavior of evolution on molecular fitness 
landscapes (McCaskill 1984a). Landscapes with finite 
correlation lengths for fitness values generically show 
error thresholds at copying fidelities whose locations de- 
pend on the distribution of fitness values. Correlation 
lengths of fitness landscapes are related to the numbers of 
local optima, and thus also to the speed of optimization. 
Besides the distribution of fitness values their autocorre- 
lation functions and the correlation lengths derived from 
them, provide the most important characteristic for evo- 
lution on fitness landscapes (Eigen et al. 1989: p. 217). 

RNA is now recognized as having a special role 
amongst the information containing molecules of molec- 
ular biology, since it does not only represent the template 
in replication and translation but also acts as catalyst in 
RNA ligation and cleavage (Cech 1990) as well as amino- 
acyl esterase activity (Piccirilli et al. 1992). In addition it 
has a predominant role in ribosomal translation: ribo- 
somes from the eubacterium Thermus aquaticus retain 
there peptidyl transferase activity after removal of 80% 
of its protein (Noller et al. 1992). The secondary structure 
folding problem for RNA has a unique position in molec- 
ular biology as a computationally tractable, experimen- 
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Fig. 1. Basic structure elements. Every 
structure within the described secondary 
structure model can be decomposed into 
such basic elements. The free energy of a 
secondary structure is simply the sum over 
all contributions of these structural ele- 
ments for which detailed experimental data 
are available 

tally well parametrized, biologically significant and clear- 
ly separable component  of  the sequence-function rela- 
tionship (Fontana et al. 1991). The feasibility of  using 
fitnesses based on RNA secondary structures has been 
verified by the computational  studies of  evolutionary 
optimization in an RNA world based on replication and 
mutat ion (Fontana and Schuster 1987, Fontana  et al. 
1989). In addition, the statistical properties of R N A  
folding landscapes and RNA structures have been inves- 
tigated extensively in recent time (Fontana et al. 1991; 
1992 a, b). 

These studies of RNA landscapes were based on a 
dynamic programming folding algorithm due to Water- 
man and Smith (1978) and originally implemented by 
Zuker and Stiegler (1981), which predicts only the most 
stable secondary structure of an R N A  molecule accord- 
ing to the minimum free energy criterion. In reality, how- 
ever, an R N A  molecule is better described by an ensem- 
ble of secondary structures, which have free energies close 
to the minimum of free energy. A new algorithm has been 
published in McCaskill (1990), which allows one to calcu- 
late the partit ion function of  the entire ensemble of  sec- 
ondary structures. 

In this contribution, we present studies on R N A  land- 
scapes by means of  this parti t ion function algorithm. 
Having the partit ion function allows one to obtain the 
probabilities of individual structures or subclasses of 
structures and all thermodynamic quantities of interest. 
The partit ion function can be considered as a function of  
temperature or of various parameters of the model such 
as salt concentration. 

2 Theory 

2.1 R N A  secondary structures 

Predicting the three dimensional structure of an R N A  
molecule merely from the sequence is still at an early 

stage of  development (Major et al. 1991). Therefore cur- 
rent algorithms focus on the prediction of  the secondary 
structure, i.e. the "skeleton" of  the 3 D structure formed 
by the Watson-Crick base pairs G - C  and A = U as well 
as the "wobble"  G -  U base pairs. This is both physically 
and biologically meaningful since, firstly, the main part  
of the free energy of structure formation results from 
these base pairing interactions and, secondly, a strong 
conservation of secondary structure elements in evolution 
has been reported (Sankoff et al. 1988; Cech 1988; Le and 
Zuker 1990). 

An R N A  molecule of chain length v can be represent- 
ed as a string I = [ s l s z s 3  . . . s v ] ,  where the letters s~ 
are taken here from the natural four letter alphabet 
{A, U, G, C}, or from a binary alphabet {G, C}. By 
IUPAC convention, numbering within the string of  let- 
ters begins at the 5'-end of the R N A  molecule. 

A secondary structure S is defined as the set of all base 
pairs (s~, sj) with ( i<j )  fulfilling the following two re- 
quirements (Waterman 1978): 

1) each base is involved in at most one base pair, 
2) there are no knots or pseudoknots, i.e. if (si, sj) and 

(s k, s~) are base pairs then i < k < l < j  or k < i < j  < l. 

Knots, pseudoknots and triple-helices are considered 
as parts of  the tertiary structure - they are beyond the 
scope of our model. There are two good reasons for these 
restrictions in the definition of secondary structures: 
firstly, they are necessary in order to allow for efficient 
algorithms, and secondly, no reliable experimental data 
are available for the free energy contributions of  pseudo- 
knots or triple helices. 

The basic elements of  secondary structures are shown 
in Fig. 1. For  the free energies of  these building blocks 
experimental data are available depending on the length 
of the unpaired regions as well as which interior and 
closing base pairs are involved (Fig. 1). These elements 
are assumed to contribute additively to the overall free 
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energy of the complete secondary structure. For multiple 
loops a linear assumption is used (Zuker and Sankoff 
1984), free unpaired regions like joints and free ends are 
assumed to have vanishing free energies. The data set 
used here has been taken from the literature (Freier et al. 
1986; Jaeger et al. 1989). 

The unique decomposition of secondary structures 
outlined above suggests a simple string representation of 
structures by identifying a base pair with a pair of match- 
ing brackets and denoting an unpaired digit by a circle 
(upstream is understood in 5'-3' direction in accord with 
the IUPAC convention; downstream refers to the oppo- 
site direction): 

< upstream paired base 
> downstream paired base 
© single-stranded base 

The so-called mountain representation o f  secondary struc- 
tures derived by Hogeweg and Hesper (1984) is closely 
related to this string representation. The bracket notation 
is coding for a tree (Fontana et al. 1991). Other tree rep- 
resentations have been proposed for RNA secondary 
structures as well (Zuker and Sankoff 1984; Shapiro 
1988; Shapiro and Zhang 1990; Fontana et al. 1992 a). 

2.2 Partition function for  R N A  secondary structures 

The most common folding algorithm (Waterman 1978; 
Zuker and Stiegler 198l) predicts only the thermodynam- 
ically most stable secondary structure. At room tempera- 
ture, however, RNA molecules do not take on only the 
most stable structure, they seem to rapidly change their 
conformation between structures with similar free ener- 
gies. The simplest way to account for this is to compute 
not only the optimal structure but all structures within 
a certain range of free energies (Waterman and Byers 
1985). 

A recent algorithm (McCaskill 1990) is capable of cal- 
culating the entire partition function 

Q (I) = Z e-V(S)/kr (1) 
S ~ M (I)  

M (I) denotes the set of all secondary structures of a par- 
ticular sequence I, k is Boltzmann's constant and T is the 
absolute temperature. 

The additivity of the free energy contributions in the 
secondary structure model implies a factorization of the 
partition function which again enables a dynamic pro- 
gramming scheme. The partition function algorithm and 
the Zuker-Stiegler algorithm have the same time com- 
plexity: the performance time increases as the third power 
of the sequence length v. 

All thermodynamic quantities of interest can be derived 
from the partition function Q. Here we are mainly inter- 
ested in the free energy of folding 

F (I) = k T log Q (I), (2) 

i.e. the free energy of the ensemble of secondary structures 
of a given sequence I at thermodynamic equilibrium, We 
remark that this is not the free energy of a single structure 

as referred to in the conventional minimal free energy 
calculation. There (Tinoco 1971) the use of free energy 
refers to the fact that each individual secondary structure 
is actually thermodynamically parametrized as an ensem- 
ble of substructures. Following this parametrization, the 
calculation is a minimization which neglects the entropic 
contributions of different related secondary structures 
and so, one is not actually calculating a free energy. 

In order to calculate the partition function at different 
temperatures, one needs to extrapolate the experimental 
data for the secondary structure elements, which are 
measured mostly near 37 °C. In addition enthalpies and 
entropies are assumed to be temperature independent in 
the range we are interested in here. For stacks both en- 
thalpies AH°37 and entropies A S ~  are experimentally ac- 
cessible, so we get for the free energy of stacks 

Stacks: AG ° (T)  = A H O y -  T z ] S ~ 7  . (3) 

The assumption that A G ° for loops is purely entropic has 
sufficed so far (Freier et al. 1986, Sugimoto et al. 1987a, b, 
Turner et al. 1988, Jaeger et al. 1989, Peritz et al. 1991). It 
is the analogue of a conventional assumption in polymer 
physics. Hence we have a temperature dependence for the 
free energy contributions of interior loops, bulges and 
multiple loops of the form 

Loops: AG ° (T)  = - T z]S°37 . (4) 

The minimal free energy of a single structure therefore 
does not coincide with the 0 K limit of the free energy of 
the entire ensemble, since the former calculates the most 
stable secondary structure at 37 °C. Extrapolation of the 
data far away from 37 °C is of course critical, because a 
linear temperature dependence is only valid in a narrow 
range around the reference temperature (37°C). Never- 
theless, this parametrization turned out to be sufficient to 
model the statistical properties of RNA folding land- 
scapes in a certain neighborhood of the reference. 

The partition function algorithm, like nature, does not 
yield a single secondary structure, but it allows one to 
compute the probability that a given secondary structure 
S occurs in the equilibrium ensemble: 

Prob (S) = ~ exp - (5) 

The most probable structure is well described by the pair- 
ing matrix P =  {Pij} (McCaskill 1990) 

p,j = Prob {i and j form a pair} . (6) 

In addition the matrix contains information about the 
probability of alternative structures. It can be obtained by 
backtracking with cubic time complexity. 

2.3 Comparing equilibrium structure ensembles 

The bracket notation introduced in 2.1 allows the inter- 
pretation of a secondary structure as a string s (S). A 
standard maximal similarity alignment algorithm (Water- 
man 1984) can be used to define similarity and distance 
measures between secondary structures. This approach 
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has been used by Hogeweg and coworkers (Hogeweg 
and Hesper 1984, Konings 1989, Konings and Hogeweg 
1989): 

d (Si ,  $2) = dat [s (Si) , s ($2) l (7) 

Alternative definitions of distance are based on the 
tree representations of secondary structures and invoke 
tree editing to define a distance (Fontana et al. 1991; 
1992 a, b). Both structure distance definitions have shown 
to be statistically equivalent. 

Because of limitation in the computer resources we 
cannot explicitly use all individual secondary structures 
of a given sequence. Therefore we generalize the string 
representation of single structures and compute for each 
position i in the sequence the probability to be upstream 
paired, downstream paired or unpaired. 

P[ = E Po 
j>i 

p? = ~, p,j 
j<t 

(8) 

The probability that the base at position i is unpaired is 
p~ = 1 - p ~  - p C .  Note that in contrast to the correspond- 
ing string encoding for a single secondary structure the 
vec torsp<=(p~, . .  < p> > . . )no ,p, , . . . ) and  =(p~ . . . .  ,p~ . 
longer form a one-to-one encoding of the secondary 
structure ensemble ~ since the base-pairing matrix P can- 
not be restored from them. 

A reasonable definition for the distance of two such 
vectors, p (Si) and p (Sz), uses again an alignment proce- 
dure at the level of the vectors p<, p > and p°. We then 
define the similarity measure for an aligned position (i,j) 
by 

(i, J) = %~>~> (S1) P J> ($2) -~ N/P/< (S1) Pf (Sz) 

+ x / ~  ($1) P~ ($2). (9) 

Instead of the geometric mean in the above definitions we 
could for example use a logarithmic mean. The similarity 
measure ~ (i,j) of a particular alignment (i,j) of the two 
structure ensembles $1 and $2 is then given by the follow- 
ing sum over all aligned positions 

~?(i,j)= Z 7(i,j). (10) 
E aligned J 

The similarity measure of two structure ensembles is de- 
fined by the optimal alignment 

sire ($1, Sa) = max ,~ (i,j) (11) 
(i, j) 

As an immediate consequence we find 

0_<sire (S~, $2) < min (vl, v2) (12) 

where v~ and v 2 are the chain lengths of the two 
molecules. 

Finally, a d{stance measure of secondary structure 
ensembles may be defined by 

= 1 (v i + v2)_ma x 7 (i,j) (13) 
(i, j) 

which is metric and fulfils 

0<6 ($1, S~)< vl +v2 
- 2 

(14) 

In addition we define a general multistructure distance 

6,, (x, y) = 5? Px (S) py (S') 6 (S,S') (15) 
S,S' 

where p~ (S) is the equilibrium probability of structure S 
in the ensemble of secondary structures for sequence x 
and pr (S') the equilibrium probability of structure S' in 
the ensemble of secondary structures for sequence y. 

2.4 Complex combinatory maps 

In order to study the statistical properties of RNA mole- 
cules with respect to their genetic relation we first need 
a few formal definitions: the set of all sequences with 
given length v composed from an alphabet A of size x 
together with the Hamming distance (Hamming 1986) 
form the so-called sequence space (Maynard-Smith 1970; 
Eigen 1971; Swetina and Schuster 1982) (A v, d). In this 
contribution we deal with the two alphabets {G, C} and 
{G, C, A, U}. A landscape is obtained by assigning a 
value f (x), e.g. a fitness or an energy, to each point (i.e. to 
each sequence) x in sequence space. Recently the concept 
of landscapes has been generalized to complex combina- 
tory maps where the distribution of structures rather than 
that of values f (x) assigned to sequences is considered 
(Fontana et al. 1991, 1992a). What we are dealing with 
than is a mapping from sequence space with the Ham- 
ming distance as metric into shape space, the set of all 
structures (M). The tree distance 6 mentioned in sect. 2.3 
and obtained by tree editing (Fontana et al. 1991, 1992a) 
induces a metric on this set and defines a "shape space" 
(M, 6). The notion of shape space is due to Perelson and 
Oster (1979). In order to point at the distinction from 
landscapes we shall speak of structure and structure 
ensemble mappings (in contrast to fitness and other scalar 
properties, structures are essentially non-scalar). 

Landscapes are qualitatively characterized by their 
ruggedness (Kauffman and Levin 1987; Kauffman et al. 
1988; Macken and Perelson 1989; Eigen etal. 1989; 
Weinberger 1990, 1991; Fontana etal. 1991, 1992a, b; 
Weinberger and Stadler 1992) which can be measured 
conveniently by means of empirical correlation functions 

Q (d) = ( f ( x )  f(Y))n~, y)=e- ( f ) 2  
( f 2 > _ ( f > 2  (16) 

The averages (.  >atx, y)=a refer to pairs of sequences with 
prescribed Hamming distance d in sequence space and 
(. >ra,dom refers to a pair of sequences which are chosen 
independently at random. As shown in Fontana et al. 
(1992a) (16) can be rewritten as 

(d) = 1 - ( ( f  ( x ) -  f (Y))Z) a~' Y)=a 
( ( f (p)  _ f(q))2 ) r a n d o m  (17) 

In this form Q depends only on the differences I f ( x ) - f ( Y ) l  
of the fitness values. Fontana et al. (1992 a) suggested to 



generalize (17) by replacing the squared differences of 
values by squared distances 62 (f(x),  f(y)) in shape space 
(M, a): 
0 (d) = 1 - (62 (f(x),  f(Y)))d(x,y):d (18) 

( a2 (f(P), f(q)))random 

For any complex combinatory map one may then de- 
fine the joint probability density 

Prob {d (x, y) = d, a (f(x),  f(y)) = a} = fo (6, d) (19) 

where we assume that all pairs (x, y) are picked with equal 
probability. Since random pairs of sequences will almost 
always have a Hamming distance close to v (n-1) /n ,  it is 
more convenient for numerical purposes to compute the 
conditional probability density 

Prob {a(f(x), f(y)) = a given d(x ,y)=d} = go (aid) (20) 

On a sequence space the two densities are related by 

go (aid) = p (d). go (a,d) (21) 

where 

p (d) = ~-~ • ( ~ -  1)d (~)  (22) 

is the probability that two randomly chosen points have 
Hamming distance d with ~ being the number of letters in 
the alphabet. The density function go (aid) can easily be 
estimated numerically by sampling. 

It has proved to be useful (Fontana et al. 1991) to 
characterize the autocorrelation function by a "mean cor- 
relation length" I which is defined by 

(1) = 1/e  (23) 

although ~ (d) is usually not a single decaying exponen- 
tial. 

In order to calculate the autocorrelation function ~ (d) 
from the density surface go (aid) we simply use the follow- 
ing identities and (18) 

(a 2 (x,y))~x,,~:~ = Z ~2 ~ (aid) 
6=0 

(24) 
(a 2 (x,y))random = ~ ~ a 2 ~O (a,d) 

6=0 d=O 

For the present work the alignment-type distance a (S~, $2) 
defined in the previous section has been used as metric 
in the conformational space consisting of the structure 
ensembles. 

Instead of calculating go (aid) from large numbers of 
pairs of sequences with prescribed Hamming distance, 
random walks (Weinberger 1990, Fontana et al. 1991) can 
be used effectively as well. A random walk on sequence 
space is a series of sequences x, generated from iterated 
point mutations applied to a initial sequence Xo. The 
series {x~} gives rise to a "time series" {/(x,)} of free 
energies with autocorrelation function 

( f (x~)  f (x ,+, ) ) - -  (f)2 
r(s) = ( f 2 ) _ ( f ) 2  (25) 

The relation of r (s) and Q (d) are determined by the geo- 
metric relaxation of the random walk in sequence space; 
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explicit formulae can be found in Fontana et al. (1992b). 
This method has two disadvantages: firstly the conver- 
gence is relatively slow, because many of sampled pairs of 
strings are highly correlated with each other, and secondly, 
pairs with a Hamming distance larger than v (~-1) /×  are 
found only very rarely. 

2.5 Fitness landscapes based on structures 

On the basis of tertiary structure and reaction rates, we 
expect the fitness of a structure to decay more than linear- 
ly with the structural distance from a given functionally 
active structure, for example exponentially. This corre- 
sponds to a cooperative effect where substructures con- 
tribute multiplicatively to fitness so that a structure must 
be very nearly correct to have any function. In the ex- 
treme case, only the target structure will have a significant 
fitness. In both cases, the structural distance correlation 
function defined above will not correctly describe correla- 
tions of fitness in such a landscape. In fact, the multi- 
structure landscapes may then have very different proper- 
ties from those based on single structures. To see this, we 
consider two new distance measures, without regard to 
numerical tractability. The fitness oriented single-struc- 
ture difference of two sequences, in the above multiplica- 
tive case, may be written 

6 e (x, y) = 1 - e x p  (-c~ 6 (f(x),  f(y))) (26) 

where c~ is a constant parameter describing the decay of 
fitness with structural mismatch. 

The general multistructure distance defined in (15) is 
then correspondingly replaced by 

ame(X,y)= ~2~ p x ( S ) p y ( S ' ) ( 1 - e x p ( - e d ( S , S ' ) ) ) .  (27) 
S,S' 

If c~ is large enough, the width of the structural distribu- 
tion, p~ (S), provides a more significant smoothing of the 
landscape than substructure similarity. 

An overall reaction rate incurred by sequence x may 
be written (for example appealing to the transition state 
theory) as 

R (x) = 52 Px (S) r (S) (28) 
s 

where r (S) is the rate of reaction from structure S and 
might include also reaction paths via fast reacting other 
conformations of x as intermediates. The fitness will be 
some function, often sigmoidal, of R: F (x) = a (R (x)). In 
any case, it is seen from (29) that correlations in p~ (S) and 
r (S) are equally important in determining the correla- 
tions in landscapes based on overall reaction rates. 

Results 

3.1 Free energies 

The average free energy of secondary structures becomes 
linearly more negative with increasing chain length 
(Fig. 2), since the mean number of base pairs increases 
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linearly too (Fontana et al. 1992a). It is remarkable that 
the linear regime extends down to chain lengths as short 
as v = 20 where one might already have expected specific 
effects of structural elements (see also Fontana et al. 
1991). Stacking energies are higher when only GC-pairs 
are involved and therefore the formation of secondary 
structure from GC-only sequences yields a lower average 
free energy than secondary structures built up from the 
full GCAU alphabet. There are two different effects con- 
tributing to the temperature dependence of free energies 
(Fig. 3): 

(1) In the lower temperature region there is a linear 
increase of the free energy, because of the negative en- 
tropies [(3) and (4)], and 

(2) as the bonds become weaker, the mean number of 
base pairs formed in the secondary structure decreases 
too. 

The second contribution obviously saturates when the 
majority of structures in the ensemble are already close to 
the unfolded state. The variances of free energies scale 
linearly with the chain length v because the total free 
energy of a secondary structure is a sum of many inde- 
pendent energy contributions for sufficiently large mole- 
cules. Because of the central limit theorem we expect the 
distribution of free energies to approach a Gaussian at 
sufficiently large chain lengths. Our computational data 
(not shown here) support this. Deviations from the Gaus- 
sian distribution increase with increasing temperature 
since the distribution of free energy values is essentially 
truncated at F =  0 (because the totally unpaired structure 
has F =  0) and becomes skew (Fig. 4). 
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3.2 Correlation o f  energies 

The correlation length 1 of the free energy landscape 
scales linearly with the chain length (Fig. 5). All correla- 
tion length reported here are obtained from a linear fit to 
log (Q (d)). The correlation length can be estimated rough- 
ly from the nearest neighbor correlation (Fontana et al. 
1992b) 

2 var [f] 
(29) 

l ~, ( ( f ( x )  --f(x'))Z)d(x. x')= 1 
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It is known that the denominator  is roughly constant 
(and bounded from above), while the enumerator  scales 
linearly with v as shown in the previous section. The 
correlation length depends heavily on the alphabet: it is 
approximately twice as large for the natural GCAU land- 
scapes than for the GC landscapes. Landscape with 
longer range correlation have fewer local optima (Wein- 
berger 1990, Stadler and Schnabl 1992). The correlation 
length for both alphabets are roughly comparable with 
the data obtained from the minimal free energy of single 
structures (Fontana et al. 1991, 1992b), 

Figure 6 shows the temperature dependence of the 
correlation length of the free energy landscape for GC 
and GCAU sequences. In both data sets the correlation 
length remains approximately constant up to a character- 
istic temperature T* (which depends on the base compo- 
sition). At T* the correlation length shows a peak, indi- 
cating that the landscape becomes smoother. T* can be 
identified as the average melting temperature of the struc- 
ture ensemble, At T* the average number of base pairs 
starts to decrease rapidly (Fig. 7). We cannot expect that 
our model calculations predict the experimental melting 
temperatures for RNA sequences reliably, since both, the 
A H  ° and the A S  ° values are assumed to be temperature 
independent. The T* values computed, however, are 
not completely off the point, and relative temperature 
stabilities of GC and GCAU sequences are reproduced 
correctly. 

The fact that the correlation length is independent of 
temperature is a consequence of the linear dependence of 
free energy on temperature below the melting point. We 
compared the correlation length for landscapes corre- 
sponding to the minimal free energy algorithm with our 
data computed at 37 °C. Although the values for the cor- 
relation length of free energy landscapes resulting from 
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the Zuker algorithm are significantly smaller than the 
correlation lengths calculated from the partit ion function 
algorithm for T=3 7 ° C ,  the deviations are not tremen- 
dous. For  the observed range of chain lengths they are 
around 25%. Best linear fits to the chain length depen- 
dence of the correlation length for both algorithms is 
given in Tables 1 and 2. 
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3.3 Correlation o f  secondary structures 
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Fig. 7. Temperature dependence of the average number of base 
pairs for v = 50. GCAU alphabet, n, GC alphabet, 

Table 1. Correlation length l: GCAU alphabet, F refers to Fontana 
et al. t992b 

v F -- 30 37 70 t00 

30 6.01 7.74 7.86 7.19 10.30 
40 8.14 10.54 9.35 8.97 12.37 
50 11.30 13.64 13.15 13.96 18.86 

Slope 0.263 0.300 0.242 0.307 0.424 

Table 2. Correlation length h GC alphabet, F refers to Fontana 
et al. t992b 

v F - 4 0  37 100 130 

30 2.94 3.73 3.52 3.60 6.24 
40 4.00 4.70 4.68 4.36 10.57 
50 4.54 5.76 6.22 5.70 13.30 

Slope 0.086 0.116 0.127 0.110 0.373 

In Fig. 8 the correlation length of the structural ensemble 
mapping  is shown as a function of the temperature. In 
contrast  to the correlation length of the free energy land- 
scape (Fig. 6) the structure correlation length does not 
remain constant below the mean melting temperature. 
We see a steady increase of the structure correlation 
length beginning from low temperatures up to the mean 

melting temperature. Apparently the structural ensemble 
mapping  is more sensitive to temperature changes below 
the melting point. At temperatures above the melting 
point the correlation length decreases again. Naively one 
would expect, that the correlation length diverges in the 
limit of high temperatures since all RNA molecules are 
then in the unfolded state. Inspection of (17), however, 
shows that both  the denominator  and the numerator  
vanish at high temperatures. Minute remainders may 
cause large effects then, and it is difficult to explain there- 
fore why the correlation length decreases again beyond 
the melting point. 
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In Fig. 9 the conditional probability density surfaces 
according to (19) are shown for the structure ensemble 
mapping and the free energy landscape at three different 
temperatures. Here we present only surfaces for natural 
GCAU sequences. Increasing temperature has the effect 
of shifting the whole distribution towards zero. The shape 
of the probability density surface of the free energy land- 
scape along the free energy distance axes has a simple 
explanation. Since the distribution of free energy values 
in the landscapes is essentially Gaussian, energy differ- 
ences are also Gaussianly distributed. Taking the abso- 
lute value of the differences thus amounts to a truncation 
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Table 3. S t ruc ture  corre laUon length l: G C A U  alphabet ,  F refers to 
F o n t a n a  et al. 1992a 

v F - 30 37 60 70 80 100 

30 3.99 4.21 5.94 6.38 7.24 7.33 4.78 
50 5.46 3.76 8.92 12.23 11.52 11.34 8.03 

Table 4. St ruc ture  corre la t ion length  l: G C  alphabet ,  F refers to 
F o n t a n a  et al. 1992a  

v F -- 30 37 90 100 110 130 

30 1.86 2.46 2.76 3.32 3.40 3.54 2.28 
50 2.35 2.52 3.13 5.05 5.83 5.44 1.92 

at zero. Obviously this cannot be true for the shape of the 
probability surface for the structure ensemble mapping, 
because structures are inherently non-scalar. 

4 D i s c u s s i o n  

The problem of dealing with the full complexity of macro- 
molecular sequence dependent structures is truncated 
here at the secondary structure level. This is the limit of 
current computational software and hardware. True 3 D 
spatial structures and structure-function-relations must 
still be explored in detail to complete the single molecule 
genotype-phenotype mapping. What we have shown so 
far is that the sequence-secondary structure relationship 
already has important implications for the evolution of 
macromolecules. How much will spatial structure forma- 
tion or inaccuracies in the secondary structure model 
affect the conclusions? The latter point has been investi- 
gated for optimal secondary structures (rather than distri- 
butions) via a change in the thermodynamic parameters, 
showing that, while changes in single sequences are signif- 
icant, the overall form of the secondary structure land- 
scape remains unchanged (Fontana et al. 1992 b). Tertiary 
interaction introduces additional base pairing such as 
pseudo-knots and other constraints on the flexibility of 
single stranded portions. The key question is whether the 
equilibrium distribution of spatial structures is as broad 
as that for secondary structures or whether for each se- 
quence the tertiary effects can be regarded as a specific 
stabilization for example of one or a few of the alternative 
secondary structures. If tertiary effects would contribute 
an additional free energy stabilization of, say, 10 kcal/mol 
to only one particular structure at room temperature, we 
might expect a significant reduction in the number of 
alternative structures sampled. While this may be the 
rule for some optimized sequences, we find it hard to 
imagine that such specific selection of secondary struc- 
tures occurs for an average sequence. Obviously, we are 
not yet in a position to give a definite answer to this 
question. At any rate, a good first approach to determine 
the sequence dependence of spatial structures is further 
biasing of the weighted secondary structure distributions 
calculated here. 
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The free energy landscape of RNA folding has been 
analyzed in detail using the partition function algorithm. 
As a convenient measure for the ruggedness of landscapes 
we computed the pair correlation function in terms of the 
Hamming distance. In order to investigate the relation 
between sequences and their structure ensembles com- 
puted by the partition function algorithm, we define a 
conformation space of structure ensembles. A distance 
measure in conformation space is proposed, which is 
based on the base pairing probability matrix of the entire 
structure ensemble and a simple alignment algorithm. 
This measure can be readily computed and since it defines 
an alignment of structure ensembles it is proposed as a 
tool for reconstructing phylogenies. Here we used this 
distance measure to compute the pair correlation of 
mappings from sequence space into conformation space 
(structure ensemble mappings). 

The free energy of an equilibrium ensemble of sec- 
ondary structures for a given sequence (calculated from the 
partition function) is a scalar measure of the mean stability 
of folding and an obvious first candidate for a measure of 
fitness. Differences in free energy for different sequences 
reflect different stabilities of the structural ensembles. 
Defining a distance between the two structure ensembles of 
a pair of sequences provides a finer measure of the correla- 
tions between sequence and their structure ensembles. We 
have investigated both correlations in this paper. 

The correlation length as a function of temperature 
exhibits a characteristic temperature for both mappings 
(free energies and structures) which can be interpreted as 
the mean melting temperature of RNA. Both the free 
energy landscape and the structure ensemble mapping 
have been shown to be much less rugged for natural 
GCAU sequences than for pure GC sequences. This effect 
was also observed with single structure mappings 
(Fontana et al. 1992 a). The shape of the probability den- 
sity surfaces (Fig. 9) along the Hamming distance axis 
gives us more insight. We see that the density surfaces 
remain unchanged for distances larger than a characteris- 
tic Hamming distance, which is about two to three times 
the correlation length. Apparently sequences with dis- 
tances larger than this characteristic Hamming distance 
are statistically independent. Work in progress addresses 
the related question as to whether a good approximation 
to any chosen structure can be found within this distance 
from an arbitrary sequence. If so, evolution has not to 
walk far through the sequence space to find solutions 
to predefined problems. Furthermore, this would mean 
that if we are interested only in satisfactory local optima, 
the evolutionary optimization procedure can be restrict- 
ed to sub-spaces of the diameter of this characteristic 
Hamming distance. 

The increased correlation length for the multi-struc- 
ture RNA landscapes, when compared with that of the 
single structure landscape, provides a minor smoothing of 
the evolution problem of finding sequences with a given 
structure. However, there is a much more significant effect 
of the equilibrium structural variety calculated in this 
work. Until now, we have used implicitly the distance 
between the actual and a given desired structure or be- 
tween the actual and desired structural ensembles as our 

measure of fitness. The structural correlation function 
characterizes such a mapping. 

In order to go beyond this simple distance related 
structural fitness we defined new distance measures in 
section 2.5 [(26) and (27)] which account for most strin- 
gent functional requirements that are not well represent- 
ed by a linear dependence on structure or structure 
ensemble distance. Depending on the choice of a tuneable 
parameter (e) the fitness relevant subset of structures or 
structure ensembles may vary from a broad distribution 
to a single target structure. The difficulty of optimization 
may again vary considerably with relevant functional re- 
lationship. (It matters indeed whether F or exp ( - F )  is 
the quantity to be optimized.) 

There is a second evolutionary advantage of the struc- 
tural ensemble: it increases the effective population size. 
Since many of the different secondary structures in an 
ensemble may be sampled within a given replication 
cycle, the effective number of sampled conformations is 
much larger than mere population size. In the quasi- 
species model and in other optimization algorithms the 
rate of evolution depends strongly on population or 
sampling size. In the limit of infinite size populations 
approach a global optimum exponentially in the quasi- 
species model since all sequences are already present. In 
finite populations exponential amplification of advanta- 
geous sequences can take place only after they were 
formed in single copies by a mutation event and this lead 
to major delays in the optimization process (McCaskill 
1984b, Fontana and Schuster 1987, Fontana et al. 1989). 
The sampling of many conformations means that partial- 
ly occupied structures in the distribution may serve as a 
basis for differential amplification even when sampled 
only a small fraction of the time by a single member of the 
population. 

The consequences of conformational ensembles rather 
than single structures of sequences were cast into the lan- 
guage of reaction kinetics in (28). Here we conclude this 
digression into evolutionary optimization dynamics by 
means of an illustrative example. Consider the target 
structure or distribution of acceptable target structures as 
a point or area in sequence space. Optimization is suc- 
cessful if it hits the target. The genealogy of a single se- 
quence represents a trajectory through sequence space. 
The quasispecies concept broadens the trajectory to a 
band, the concept of conformational ensembles widens 
this band through sequence space further. Clearly, opti- 
mization is more efficient and faster the broader this band 
is. Neglecting non-equilibrium structures means an un- 
derestimation of the power of Darwinian selection in 
molecular evolution. 

In summary, modelling RNA secondary structures 
with the partition function algorithm provides significant 
insight beyond the Zuker and Stiegler (1981) approach. 
Direct comparison of the landscapes generated by the 
two different folding algorithms shows a good qualitative 
agreement but significant quantitative differences. At 
physiological temperatures the landscapes obtained by 
the partition function algorithm are saliently smoother. 
Closer consideration shows major advantages for the use 
of structure ensembles rather than single structures in the 
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a t t e m p t  to u n d e r s t a n d  evo lu t ion  and  the poss ib i l i ty  to 
m a k e  a quan t i t a t i ve  l ink to func t iona l  l andscapes  based  
on r eac t ion  rates.  
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