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Abstract. Statistical properties of RNA folding land-
scapes obtained by the partition function algorithm (Mc-
Caskill 1990) are investigated in detail. The pair correla-
tion of free energies as a function of the Hamming
distance is used as a measure for the ruggedness of the
landscape. The calculation of the partition function con-
tains information about the entire ensemble of secondary
structures as a function of temperature and opens the
door to all quantities of thermodynamic interest, in con-
trast with the conventional minimal free energy ap-
proach. A metric distance of structure ensembles is intro-
duced and pair correlations at the level of the structures
themselves are computed. Just as with landscapes based
on most stable secondary structure prediction, the land-
scapes defined on the full biophysical GCAU alphabet
are much smoother than the landscapes restricted to pure
GC sequences and the correlation lengths are almost con-
stant fractions of the chain lengths. Correlation functions
for multi-structure landscapes exhibit an increased corre-
lation length, especially near the melting temperature,
However, the main effect on evolution is rather an effec-
tive increase in sampling for finite populations where
each sequence explores multiple structures.

Key words: Fitness landscapes - Partition function —
Quasispecies — RNA secondary structures

1 Introduction

In Sewall Wright’s model (Wright 1932) biological evolu-
tion is understood as a fitness optimizing process on a
very complex abstract landscape. Manfred Eigen (1971)
made an attempt to model the origin of biological infor-
mation by placing Darwin’s principle onto a physical
basis. Reaction kinetics of erroneously replicating bio-
polymers was applied to study evolution on the molecu-
lar level and led to the concept of the (molecular) quasi-
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species (Eigen and Schuster 1977; Figen et al. 1988, 1989)
which may be considered as the genetic reservoir of an
asexually replicating ensemble. The molecular concept
enables a more complete description of the evolutionary
optimization process, since it includes the relationships
between sequence, structure, and function of biopolymers
as the ultimate source of the reaction rate constants of the
kinetic ansatz. Indeed, the fitness values are obtained as
(mostly linear) combinations of these rate constants.
Specific models of fitness landscapes were investigated by
analytical and numerical tools (Swetina and Schuster
1982; Schuster and Swetina 1988; Nowak and Schuster
1989). Replication with decreasing replication accuracy
shows an error threshold which sharpens with increasing
chain lengths, thereby closely resembling cooperative
transitions in biopolymers. No (finite) population can
be stationary at error rates exceeding the value of the
threshold which implies complete loss of genetic informa-
tion. This approach was complemented by a study of
the generic behavior of evolution on molecular fitness
landscapes (McCaskill 1984a). Landscapes with finite
correlation lengths for fitness values generically show
error thresholds at copying fidelities whose locations de-
pend on the distribution of fitness values. Correlation
lengths of fitness landscapes are related to the numbers of
local optima, and thus also to the speed of optimization.
Besides the distribution of fitness values their autocorre-
lation functions and the correlation lengths derived from
them, provide the most important characteristic for evo-
lution on fitness landscapes (Eigen et al. 1989: p. 217).
RNA is now recognized as having a special role
amongst the information containing molecules of molec-
ular biology, since it does not only represent the template
in replication and translation but also acts as catalyst in
RNA ligation and cleavage (Cech 1990) as well as amino-
acyl esterase activity (Piccirilli et al. 1992). In addition it
has a predominant role in ribosomal translation: ribo-
somes from the eubacterium Thermus aguaticus retain
there peptidyl transferase activity after removal of 80%
of its protein (Noller et al. 1992). The secondary structure
folding problem for RNA has a unique position in molec-
ular biology as a computationally tractable, experimen-
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tally well parametrized, biologically significant and clear-
ly separable component of the sequence-function rela-
tionship (Fontana et al. 1991). The feasibility of using
fitnesses based on RNA secondary structures has been
verified by the computational studies of evolutionary
optimization in an RNA world based on replication and
mutation (Fontana and Schuster 1987, Fontana et al.
1989). In addition, the statistical properties of RNA
folding landscapes and RNA structures have been inves-
tigated extensively in recent time (Fontana et al. 1991;
19924, b).

These studies of RNA landscapes were based on a
dynamic programming folding algorithm due to Water-
man and Smith (1978) and originally implemented by
Zuker and Stiegler (1981), which predicts only the most
stable secondary structure of an RNA molecule accord-
ing to the minimum free energy criterion. In reality, how-
ever, an RNA molecule is better described by an ensem-
ble of secondary structures, which have free energies close
to the minimum of free energy. A new algorithm has been
published in McCaskill (1990), which allows one to calcu-
late the partition function of the entire ensemble of sec-
ondary structures.

In this contribution, we present studies on RNA land-
scapes by means of this partition function algorithm.
Having the partition function allows one to obtain the
probabilities of individual structures or subclasses of
structures and all thermodynamic quantities of interest.
The partition function can be considered as a function of
temperature or of various parameters of the model such
as salt concentration.

2 Theory

2.1 RNA secondary structures

Predicting the three dimensional structure of an RNA
molecule merely from the sequence is still at an early

stage of development (Major et al. 1991). Therefore cur-
rent algorithms focus on the prediction of the secondary
structure, 1.e. the “‘skeleton” of the 3D structure formed
by the Watson-Crick base pairs G=C and A=U as well
as the “wobble”” G — U base pairs. This is both physically
and biologically meaningful since, firstly, the main part
of the free energy of structure formation results from
these base pairing interactions and, secondly, a strong
conservation of secondary structure elements in evolution
has been reported (Sankoff et al. 1988; Cech 1988; Le and
Zuker 1990).

An RNA molecule of chain length v can be represent-
ed as a string I=[s,5,5,...5,], where the letters s,
are taken here from the natural four letter alphabet
{A,U,G,C}, or from a binary alphabet {G, C}. By
IUPAC convention, numbering within the string of let-
ters begins at the 5'-end of the RNA molecule.

A secondary structure S is defined as the set of all base
pairs (s;, s,) with (i<j) fulfilling the following two re-
quirements (Waterman 1978):

1) each base is involved in at most one base pair,
2) there are no knots or pseudoknots, i.e. if (s;, 5,) and
(s,, s;) are base pairs then i<k </<jor k<i<j<l

Knots, pseudoknots and triple-helices are considered
as parts of the tertiary structure — they are beyond the
scope of our model. There are two good reasons for these
restrictions in the definition of secondary structures:
firstly, they are necessary in order to allow for efficient
algorithms, and secondly, no reliable experimental data
are available for the free energy contributions of pseudo-
knots or triple helices.

The basic elements of secondary structures are shown
in Fig. 1. For the free energies of these building blocks
experimental data are available depending on the length
of the unpaired regions as well as which interior and
closing base pairs are involved (Fig. 1). These elements
are assumed to contribute additively to the overall free



energy of the complete secondary structure. For multiple
loops a linear assumption is used (Zuker and Sankoff
1984), free unpaired regions like joints and free ends are
assumed to have vanishing free energies. The data set
used here has been taken from the literature (Freier et al.
1986; Jaeger et al. 1989).

The unique decomposition of secondary structures
outlined above suggests a simple string representation of
structures by identifying a base pair with a pair of match-
ing brackets and denoting an unpaired digit by a circle
(upstream is understood in 5’-3’ direction in accord with
the IUPAC convention; downstream refers to the oppo-
site direction):

< upstream paired base
> downstream paired base
O single-stranded base

The so-called mountain representation of secondary struc-
tures derived by Hogeweg and Hesper (1984) is closely
related to this string representation. The bracket notation
is coding for a tree (Fontana et al. 1991). Other tree rep-
resentations have been proposed for RNA secondary
structures as well (Zuker and Sankoff 1984; Shapiro
1988; Shapiro and Zhang 1990; Fontana et al. 1992 a).

2.2 Partition function for RNA secondary structures

The most common folding algorithm (Waterman 1978;
Zuker and Stiegler 1981) predicts only the thermodynam-
ically most stable secondary structure. At room tempera-
ture, however, RNA molecules do not take on only the
most stable structure, they seem to rapidly change their
conformation between structures with similar free ener-
gies. The simplest way to account for this is to compute
not only the optimal structure but all structures within
a certain range of free energies (Waterman and Byers
1985).

A recent algorithm (McCaskill 1990) is capable of cal-
culating the entire partition function

QU= 3 T (1)

Se M)

M (I) denotes the set of all secondary structures of a par-
ticular sequence I, k is Boltzmann’s constant and T is the
absolute temperature.

The additivity of the free energy contributions in the
secondary structure model implies a factorization of the
partition function which again enables a dynamic pro-
gramming scheme. The partition function algorithm and
the Zuker-Stiegler algorithm have the same time com-
plexity: the performance time increases as the third power
of the sequence length v.

All thermodynamic quantities of interest can be derived
from the partition function Q. Here we are mainly inter-
ested in the free energy of folding

F({I)=kTlog Q(I), 2
1.¢. the free energy of the ensemble of secondary structures

of a given sequence I at thermodynamic equilibrium. We
remark that this is not the free energy of a single structure
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as referred to in the conventional minimal free energy
calculation. There (Tinoco 1971) the use of free energy
refers to the fact that each individual secondary structure
is actually thermodynamically parametrized as an ensem-
ble of substructures. Following this parametrization, the
calculation is a minimization which neglects the entropic
contributions of different related secondary structures
and so, one is not actually calculating a free energy.

In order to calculate the partition function at different
temperatures, one needs to extrapolate the experimental
data for the secondary structure elements, which are
measured mostly near 37°C. In addition enthalpies and
entropies are assumed to be temperature independent in
the range we are interested in here. For stacks both en-
thalpies AH3, and entropies 4S5, are experimentally ac-
cessible, so we get for the free energy of stacks

Stacks: AG°(T) = AH3,— T 4SS, . 3)

The assumption that AG® for loops is purely entropic has
sufficed so far (Freier et al. 1986, Sugimoto et al. 1987a, b,
Turner et al. 1988, Jaeger et al. 1989, Peritz et al. 1991). It
is the analogue of a conventional assumption in polymer
physics. Hence we have a temperature dependence for the
free energy contributions of interior loops, bulges and
multiple loops of the form

Loops: AG° (T)=—-T 4S5, . 4)

The minimal free energy of a single structure therefore
does not coincide with the 0 K limit of the free energy of
the entire ensemble, since the former calculates the most
stable secondary structure at 37 °C. Extrapolation of the
data far away from 37°C is of course critical, because a
linear temperature dependence is only valid in a narrow
range around the reference temperature (37 °C). Never-
theless, this parametrization turned out to be sufficient to
mode] the statistical properties of RNA folding land-
scapes in a certain neighborhood of the reference.

The partition function algorithm, like nature, does not
yield a single secondary structure, but it allows one to
compute the probability that a given secondary structure
S occurs in the equilibrium ensemble:

Prob (S) = é exp {— Fk—(;)} ®)

The most probable structure is well described by the pair-
ing matrix P={p,,} (McCaskill 1990)

p,, = Prob {i and j form a pair} . (6)

In addition the matrix contains information about the
probability of alternative structures. It can be obtained by
backtracking with cubic time complexity.

2.3 Comparing equilibrium structure ensembles

The bracket notation introduced in 2.1 allows the inter-
pretation of a secondary structure as a string s(S). A
standard maximal similarity alignment algorithm (Water-
man 1984) can be used to define similarity and distance
measures between secondary structures. This approach
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has been used by Hogeweg and coworkers (Hogeweg
and Hesper 1984, Konings 1989, Konings and Hogeweg
1989):

d(S,,8;)=dy[s(Sy), s (S,)] ™

Alternative definitions of distance are based on the
tree representations of secondary structures and invoke
tree editing to define a distance (Fontana et al. 1991;
1992 a, b). Both structure distance definitions have shown
to be statistically equivalent.

Because of limitation in the computer resources we
cannot explicitly use all individual secondary structures
of a given sequence. Therefore we generalize the string
representation of single structures and compute for each
position i in the sequence the probability to be upstream
paired, downstream paired or unpaired.

pi< =2 pPi;
J>i
(&)
pi =2 py
j<t

The probability that the base at position i is unpaired is
p;=1—p;7 —p; . Note that in contrast to the correspond-
ing string encoding for a single secondary structure the
vectors p~=(p;,...,p:,...)and p” =(p;,...,p”...)no
longer form a one-to-one encoding of the secondary
structure ensemble § since the base-pairing matrix P can-
not be restored from them.

A reasonable definition for the distance of two such
vectors, p (S,) and p (§,), uses again an alignment proce-
dure at the level of the vectors p~, p~ and p°. We then
define the similarity measure for an aligned position (i, j)
by

v )=p> G)p; &)+/p S)pS &)

+/p7 (80 p5 (55 ©

Instead of the geometric mean in the above definitions we
could for example use a logarithmic mean. The similarity
measure 7 (£, j) of a particular alignment (i, j) of the two
structure ensembles S, and S, is then given by the follow-
ing sum over all aligned positions

Ten= X v6)). (10)

1 aligned j

The similarity measure of two structure ensembles is de-
fined by the optimal alignment

Sim (gla §2) =max?(i,j) (11)

G J)
As an immediate consequence we find
0<sim (§,, §,) <min (v,, v,) (12)
where v, and v, are the chain lengths of the two
molecules.

Finally, a distance measure of secondary structure
ensembles may be defined by

0 (§15 §2) = % (vy+vy)—maxy (i j) (13)
@ 5

which is metric and fulfils
Vi+v,

0<6(S,, 8y)< >

(14)

In addition we define a general multistructure distance
O (X, Y) =SZS, p.(8) p, (8§79 (S,5) (13)

where p, (S) is the equilibrium probability of structure §
in the ensemble of secondary structures for sequence x
and p, (§') the equilibrium probability of structure §’ in
the ensemble of secondary structures for sequence y.

2.4 Complex combinatory maps

In order to study the statistical properties of RNA mole-
cules with respect to their genetic relation we first need
a few formal definitions: the set of all sequences with
given length v composed from an alphabet A of size x
together with the Hamming distance (Hamming 1986)
form the so-called sequence space (Maynard-Smith 1970;
Eigen 1971; Swetina and Schuster 1982) (4", d). In this
contribution we deal with the two alphabets {G, C} and
{G,C, A, U}. A landscape is obtained by assigning a
value f (x), e.g. a fitness or an energy, to each point (i.e. to
each sequence) x in sequence space. Recently the concept
of landscapes has been generalized to complex combina-
tory maps where the distribution of structures rather than
that of values f (x) assigned to sequences is considered
(Fontana et al. 1991, 1992a). What we are dealing with
than is a mapping from sequence space with the Ham-
ming distance as metric into shape space, the set of all
structures (M). The tree distance 6 mentioned in sect. 2.3
and obtained by tree editing (Fontana et al. 1991, 1992 a)
induces a metric on this set and defines a “shape space”
(M, ). The notion of shape space is due to Perelson and
Oster (1979). In order to point at the distinction from
landscapes we shall speak of structure and structure
ensemble mappings (in contrast to fitness and other scalar
properties, structures are essentially non-scalar).
Landscapes are qualitatively characterized by their
ruggedness (Kauffman and Levin 1987; Kauffman et al.
1988; Macken and Perelson 1989; Eigen etal. 1989;
Weinberger 1990, 1991; Fontana et al. 1991, 1992a, b;
Weinberger and Stadler 1992) which can be measured
conveniently by means of empirical correlation functions

IO fODapma— S
=2

The averages <.}, , -4 refer to pairs of sequences with

prescribed Hamming distance d in sequence space and

{. Drandom Tefers to a pair of sequences which are chosen

independently at random. As shown in Fontana et al.
(1992 a) (16) can be rewritten as

_ <(f(x)_f(y))2>d(x.y)=d

LS (P~ F (@D candom

In this form ¢ depends only on the differences | f(x)— f (1)
of the fitness values. Fontana et al. (1992 a) suggested to

¢ (d) (16)

e(d)=1 (17



generalize (17) by replacing the squared differences of
values by squared distances 8% (f(x), f(y)) in shape space

(M, 9): )
o (@) -1 — U SO aen=a
<52 (f(p): f(q))>random

For any complex combinatory map one may then de-
fine the joint probability density

Prob {d (x,y) = 4,6 (f(x), f/(y)) = 6} = (6, d) (19)

where we assume that all pairs (x, y) are picked with equal
probability. Since random pairs of sequences will almost
always have a Hamming distance close to v(x—1)/x, it is
more convenient for numerical purposes to compute the
conditional probability density

Prob {5 (f(x), f(v)) = 0 givend (x,y)=d} = p (5|d) (20)

On a sequence space the two densities are related by

(18)

p (Gld)=p - p (.4 (21)
where
pd)=x"""(x—1)" (Z,) 22

is the probability that two randomly chosen points have
Hamming distance d with » being the number of letters in
the alphabet. The density function g (3|d) can easily be
estimated numerically by sampling.

It has proved to be useful (Fontana et al. 1991) to
characterize the autocorrelation function by a “mean cor-
relation length” [ which is defined by

e()=1/e (23)

although ¢ (d) is usually not a single decaying exponen-
tial,

In order to calculate the autocorrelation function g (d)
from the density surface p (0|d) we simply use the follow-
ing identities and (18)

(8 (5,9 i nes = 3 0% 0 (31d)

o]

a=

v (24)
<52 (xay)>random = Z Z 52 @ (5=d)

§=0 d=0

For the present work the alignment-type distance ¢ (S, S,)
defined in the previous section has been used as metric
in the conformational space consisting of the structure
ensembles.

Instead of calculating g (6|d) from large numbers of
pairs of sequences with prescribed Hamming distance,
random walks (Weinberger 1990, Fontana et al. 1991) can
be used effectively as well. A random walk on sequence
space is a series of sequences x, generated from iterated
point mutations applied to a initial sequence x,. The
series {x;} gives rise to a “time series” {f(x,)} of free
energies with autocorrelation function

) SO D= 05)

D=2

The relation of r (s) and g (d) are determined by the geo-
metric relaxation of the random walk in sequence space;
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explicit formulae can be found in Fontana et al. (1992b).
This method has two disadvantages: firstly the conver-
gence is relatively slow, because many of sampled pairs of
strings are highly correlated with each other, and secondly,
pairs with a Hamming distance larger than v (% —1)/x are
found only very rarely.

2.5 Fitness landscapes based on structures

On the basis of tertiary structure and reaction rates, we
expect the fitness of a structure to decay more than linear-
ly with the structural distance from a given functionally
active structure, for example exponentially. This corre-
sponds to a cooperative effect where substructures con-
tribute multiplicatively to fitness so that a structure must
be very nearly correct to have any function. In the ex-
treme case, only the target structure will have a significant
fitness. In both cases, the structural distance correlation
function defined above will not correctly describe correla-
tions of fitness in such a landscape. In fact, the multi-
structure landscapes may then have very different proper-
ties from those based on single structures. To see this, we
consider two new distance measures, without regard to
numerical tractability. The fitness oriented single-struc-
ture difference of two sequences, in the above multiplica-
tive case, may be written

d (x,y) =1—exp (—ad (f(x), f() (26)

where « is a constant parameter describing the decay of
fitness with structural mismatch,

The general multistructure distance defined in (15) is
then correspondingly replaced by

Ome (:3) = 2 P (8) 1, (S) (1 —exp (=2 0(S.5).  (27)

If « 1s large enough, the width of the structural distribu-
tion, p, (S), provides a more significant smoothing of the
landscape than substructure similarity.

An overall reaction rate incurred by sequence x may
be written (for example appealing to the transition state
theory) as

R()=2p.(57(S) (28)

where r (S) is the rate of reaction from structure S and
might include also reaction paths via fast reacting other
conformations of x as intermediates. The fitness will be
some function, often sigmoidal, of R: F (x)=6 (R (x)). In
any case, it is seen from (29) that correlations in p,, (S) and
r (S) are equally important in determining the correla-
tions in landscapes based on overall reaction rates.

Results
3.1 Free energies
The average free energy of secondary structures becomes

linearly more negative with increasing chain length
(Fig. 2), since the mean number of base pairs increases
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linearly too (Fontana et al. 1992 a). It is remarkable that
the linear regime extends down to chain lengths as short
as v=20 where one might already have expected specific
effects of structural elements (sece also Fontana et al.
1991). Stacking energies are higher when only GC-pairs
are involved and therefore the formation of secondary
structure from GC-only sequences yields a lower average
free energy than secondary structures built up from the
full GCAU alphabet. There are two different effects con-
tributing to the temperature dependence of free energies
(Fig. 3):

() In the lower temperature region there is a linear
increase of the free energy, because of the negative en-
tropies [(3) and (4)], and

(2) as the bonds become weaker, the mean number of
base pairs formed in the secondary structure decreases
too.

The second contribution obviously saturates when the
majority of structures in the ensemble are already close to
the unfolded state. The variances of free energies scale
linearly with the chain length v because the total free
energy of a secondary structure is a sum of many inde-
pendent energy contributions for sufficiently large mole-
cules. Because of the central limit theorem we expect the
distribution of free energies to approach a Gaussian at
sufficiently large chain lengths. Our computational data
(not shown here) support this. Deviations from the Gaus-
sian distribution increase with increasing temperature
since the distribution of free energy values is essentially
truncated at F=0 (because the totally unpaired structure
has F=0) and becomes skew (Fig. 4).
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3.2 Correlation of energies

The correlation length [ of the free energy landscape
scales linearly with the chain length (Fig. 5). All correla-
tion length reported here are obtained from a linear fit to
log (¢ (d)). The correlation length can be estimated rough-
ly from the nearest neighbor correlation (Fontana et al.
1992b)

I~ 2var[f]
TG = F N D agexr=1

(29)
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It is known that the denominator is roughly constant
(and bounded from above), while the enumerator scales
linearly with v as shown in the previous section. The
correlation length depends heavily on the alphabet: it is
approximately twice as large for the natural GCAU land-
scapes than for the GC landscapes. Landscape with
longer range correlation have fewer local optima (Wein-
berger 1990, Stadler and Schnabl 1992). The correlation
length for both alphabets are roughly comparable with
the data obtained from the minimal free energy of single
structures (Fontana et al. 1991, 1992b).

Figure 6 shows the temperature dependence of the
correlation length of the free energy landscape for GC
and GCAU sequences. In both data sets the correlation
length remains approximately constant up to a character-
istic temperature T* (which depends on the base compo-
sition). At T* the correlation length shows a peak, indi-
cating that the landscape becomes smoother. T* can be
identified as the average melting temperature of the struc-
ture ensemble. At T* the average number of base pairs
starts to decrease rapidly (Fig. 7). We cannot expect that
our model calculations predict the experimental melting
temperatures for RNA sequences reliably, since both, the
AH° and the AS° values are assumed to be temperature
independent. The T* values computed, however, are
not completely off the point, and relative temperature
stabilities of GC and GCAU sequences are reproduced
correctly.

The fact that the correlation length is independent of
temperature is a consequence of the linear dependence of
free energy on temperature below the melting point. We
compared the correlation length for landscapes corre-
sponding to the minimal free energy algorithm with our
data computed at 37 °C. Although the values for the cor-
relation length of free energy landscapes resulting from
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the Zuker algorithm are significantly smaller than the
correlation lengths calculated from the partition function
algorithm for T=37°C, the deviations are not tremen-
dous. For the observed range of chain lengths they are
around 25%. Best linear fits to the chain length depen-
dence of the correlation length for both algorithms is
given in Tables 1 and 2.
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3.3 Correlation of secondary structures

In Fig. 8 the correlation length of the structural ensemble
mapping is shown as a function of the temperature. In
contrast to the correlation length of the free energy land-
scape (Fig. 6) the structure correlation length does not
remain constant below the mean melting temperature.
We see a steady increase of the structure correlation
length beginning from low temperatures up to the mean
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Fig. 7. Temperature dependence of the average number of base
pairs for v=150. GCAU alphabet, o, GC alphabet, <

Table 1. Correlation length I: GCAU alphabet, F refers to Fontana
etal. 1992b

v F —30 37 70 100
30 6.01 7.74 7.86 7.19 10.30
40 8.14 10.54 9.35 8.97 12.37
50 11.30 13.64 13.15 13.96 18.86
Slope 0.263 0.300 0.242 0.307 0424

Table 2. Correlation length I: GC alphabet, F refers to Fontana
et al. 1992b

y F —40 37 100 130

30 2.94 3.73 352 3.60 6.24
40 4.00 4.70 4.68 4.36 10.57
50 4.54 5.76 6.22 5.70 13.30
Slope 0.086 0.116 0.127 0.110 0.373

melting temperature. Apparently the structural ensemble
mapping is more sensitive to temperature changes below
the melting point. At temperatures above the melting
point the correlation length decreases again. Naively one
would expect, that the correlation length diverges in the
limit of high temperatures since all RNA molecules are
then in the unfolded state. Inspection of (17), however,
shows that both the denominator and the numerator
vanish at high temperatures. Minute remainders may
cause large effects then, and it is difficult to explain there-
fore why the correlation length decreases again beyond
the melting point.
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In Fig. 9 the conditional probability density surfaces
according to (19) are shown for the structure ensemble
mapping and the free energy landscape at three different
temperatures. Here we present only surfaces for natural
GCAU sequences. Increasing temperature has the effect
of shifting the whole distribution towards zero. The shape
of the probability density surface of the free energy land-
scape along the free energy distance axes has a simple
explanation. Since the distribution of free energy values
in the landscapes is essentially Gaussian, energy differ-
ences are also Gaussianly distributed. Taking the abso-
lute value of the differences thus amounts to a truncation
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Table 3. Structure correlation length I: GCAU alphabet, F refers to
Fontana et al. 1992a

v F -30 37 60 70 80 100

30 3.99 4.21 594 638 7.24 733 478
50 5.46 3.76 892 1223 1152 1134 803

Table 4. Structure correlation length I: GC alphabet, F refers to
Fontana et al. 1992a

v F —30 37 90 100 110 130

30 1.86 246 276 332 3.40 3.54 2.28
50 2.35 2.52 313 505 5.83 5.44 1.92

at zero. Obviously this cannot be true for the shape of the
probability surface for the structure ensemble mapping,
because structures are inherently non-scalar.

4 Discussion

The problem of dealing with the full complexity of macro-
molecular sequence dependent structures is truncated
here at the secondary structure level. This is the limit of
current computational software and hardware. True 3D
spatial structures and structure-function-relations must
still be explored in detail to complete the single molecule
genotype-phenotype mapping. What we have shown so
far is that the sequence-secondary structure relationship
already has important implications for the evolution of
macromolecules. How much will spatial structure forma-
tion or inaccuracies in the secondary structure model
affect the conclusions? The latter point has been investi-
gated for optimal secondary structures (rather than distri-
butions) via a change in the thermodynamic parameters,
showing that, while changes in single sequences are signif-
icant, the overall form of the secondary structure land-
scape remains unchanged (Fontana et al. 1992b). Tertiary
interaction introduces additional base pairing such as
pseudo-knots and other constraints on the flexibility of
single stranded portions. The key question is whether the
equilibrium distribution of spatial structures is as broad
as that for secondary structures or whether for each se-
quence the tertiary effects can be regarded as a specific
stabilization for example of one or a few of the alternative
secondary structures. If tertiary effects would contribute
an additional free energy stabilization of, say, 10 kcal/mol
to only one particular structure at room temperature, we
might expect a significant reduction in the number of
alternative structures sampled. While this may be the
rule for some optimized sequences, we find it hard to
imagine that such specific selection of secondary struc-
tures occurs for an average sequence. Obviously, we are
not yet in a position to give a definite answer to this
question. At any rate, a good first approach to determine
the sequence dependence of spatial structures is further
biasing of the weighted secondary structure distributions
calculated here.
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The free energy landscape of RNA folding has been
analyzed in detail using the partition function algorithm.
As a convenient measure for the ruggedness of landscapes
we computed the pair correlation function in terms of the
Hamming distance. In order to investigate the relation
between sequences and their structure ensembles com-
puted by the partition function algorithm, we define a
conformation space of structure ensembles. A distance
measure in conformation space is proposed, which is
based on the base pairing probability matrix of the entire
structure ensemble and a simple alignment algorithm.
This measure can be readily computed and since it defines
an alignment of structure ensembiles it is proposed as a
tool for reconstructing phylogenies. Here we used this
distance measure to compute the pair correlation of
mappings from sequence space into conformation space
(structure ensemble mappings).

The free energy of an equilibrium ensemble of sec-
ondary structures for a given sequence (calculated from the
partition function) is a scalar measure of the mean stability
of folding and an obvious first candidate for a measure of
fitness. Differences in free energy for different sequences
reflect different stabilities of the structural ensembles.
Defining a distance between the two structure ensembles of
a pair of sequences provides a finer measure of the correla-
tions between sequence and their structure ensembles. We
have investigated both correlations in this paper.

The correlation length as a function of temperature
exhibits a characteristic temperature for both mappings
(free energies and structures) which can be interpreted as
the mean melting temperature of RNA. Both the free
energy landscape and the structure ensemble mapping
have been shown to be much less rugged for natural
GCAU sequences than for pure GC sequences. This effect
was also observed with single structure mappings
(Fontana et al. 1992 a). The shape of the probability den-
sity surfaces (Fig. 9) along the Hamming distance axis
gives us more insight. We see that the density surfaces
remain unchanged for distances larger than a characteris-
tic Hamming distance, which is about two to three times
the correlation length. Apparently sequences with dis-
tances larger than this characteristic Hamming distance
are statistically independent. Work in progress addresses
the related question as to whether a good approximation
to any chosen structure can be found within this distance
from an arbitrary sequence. If so, evolution has not to
walk far through the sequence space to find solutions
to predefined problems. Furthermore, this would mean
that if we are interested only in satisfactory local optima,
the evolutionary optimization procedure can be restrict-
ed to sub-spaces of the diameter of this characteristic
Hamming distance.

The increased correlation length for the multi-struc-
ture RNA landscapes, when compared with that of the
single structure landscape, provides a minor smoothing of
the evolution problem of finding sequences with a given
structure. However, there is a much more significant effect
of the equilibrium structural variety calculated in this
work. Until now, we have used implicitly the distance
between the actual and a given desired structure or be-
tween the actual and desired structural ensembles as our
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measure of fitness. The structural correlation function
characterizes such a mapping.

In order to go beyond this simple distance related
structural fitness we defined new distance measures in
section 2.5 [(26) and (27)] which account for most strin-
gent functional requirements that are not well represent-
ed by a linear dependence on structure or structure
ensemble distance. Depending on the choice of a tuneable
parameter () the fitness relevant subset of structures or
structure ensembles may vary from a broad distribution
to a single target structure. The difficulty of optimization
may again vary considerably with relevant functional re-
lationship. (It matters indeed whether F or exp (—F) is
the quantity to be optimized.)

There is a second evolutionary advantage of the struc-
tural ensemble: it increases the effective population size.
Since many of the different secondary structures in an
ensemble may be sampled within a given replication
cycle, the effective number of sampled conformations is
much larger than mere population size. In the quasi-
species model and in other optimization algorithms the
rate of evolution depends strongly on population or
sampling size. In the limit of infinite size populations
approach a global optimum exponentially in the quasi-
species model since all sequences are already present. In
finite populations exponential amplification of advanta-
geous sequences can take place only after they were
formed in single copies by a mutation event and this lead
to major delays in the optimization process (McCaskill
1984 b, Fontana and Schuster 1987, Fontana et al. 1989).
The sampling of many conformations means that partial-
ly occupied structures in the distribution may serve as a
basis for differential amplification even when sampled
only a small fraction of the time by a single member of the
population.

The consequences of conformational ensembles rather
than single structures of sequences were cast into the lan-
guage of reaction kinetics in (28). Here we conclude this
digression into evolutionary optimization dynamics by
means of an illustrative example. Consider the target
structure or distribution of acceptable target structures as
a point or area in sequence space. Optimization is suc-
cessful if it hits the target. The genealogy of a single se-
quence represents a trajectory through sequence space.
The quasispecies concept broadens the trajectory to a
band, the concept of conformational ensembles widens
this band through sequence space further. Clearly, opti-
mization is more efficient and faster the broader this band
is. Neglecting non-equilibrium structures means an un-
derestimation of the power of Darwinian selection in
molecular evolution.

In summary, modelling RNA secondary structures
with the partition function algorithm provides significant
insight beyond the Zuker and Stiegler (1981) approach.
Direct comparison of the landscapes generated by the
two different folding algorithms shows a good qualitative
agreement but significant quantitative differences. At
physiological temperatures the landscapes obtained by
the partition function algorithm are saliently smoother.
Closer consideration shows major advantages for the use
of structure ensembles rather than single structures in the
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attempt to understand evolution and the possibility to
make a quantitative link to functional landscapes based
on reaction rates.
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